

DATASHEET

Product Name **Radial Terminal Type**

Part Name **PRVA Series**

File No. **DIP-SP-040**

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Radial Terminal Type-PRVA Series manufactured by UNI-ROYAL.
- 1.2 Self-Extinguishing.
- 1.3 Extremely small & sturdy mechanically safe.
- 1.4 Excellent flame & moisture resistance
- 1.5 Too low or too high values on Wire-wound & Power-film type can be supplied on a case to case basis.
- 1.6 Compliant with RoHS directive.
- 1.7 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 1th ~4th digits

This is to indicate the Chip Resistor. Example: PRVA= Radial Terminal Type-PRVA Series

2.2 5th ~6th digits:

1W~16W ($\geq 1W$)

Wattage	3	5	7	10	15
Normal Size	3W	5W	7W	AW	FW

2.2.1 For power rating of 1watt to 16watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

Example: 5W=5W

2.2.2 For power rating between 20 watt to 99 watt, the 5th and the 6th digit will show the whole numbers of the power rating itself

Example: 20=20W

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

J= $\pm 5\%$ K= $\pm 10\%$

2.4 The 8th to 11th digits is to denote the Resistance Value.

2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.

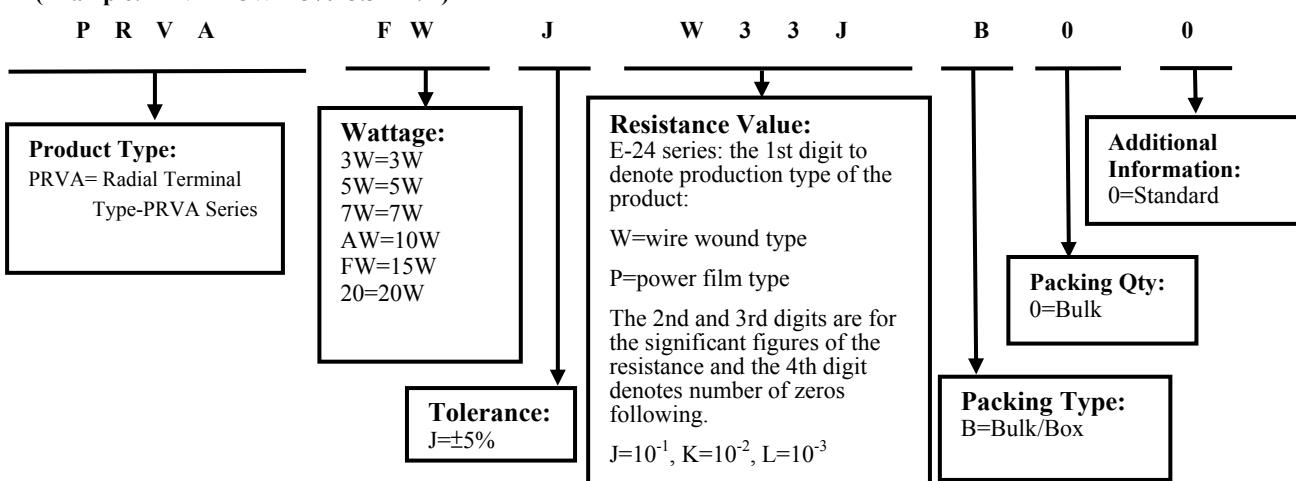
Example:

W12J=1.2 Ω W121=120 Ω P503=50K Ω

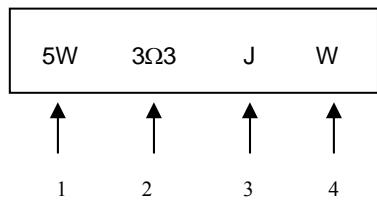
2.5 The 12th, 13th & 14th digits.

2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box


2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.

2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product


Example: 0= standard product

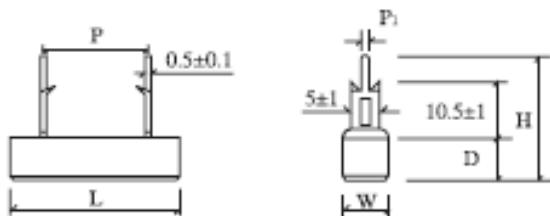
3. Ordering Procedure

(Example: PRVA 15W $\pm 5\%$ 3.3 Ω B/B)

4. Marking

Code description and regulation:

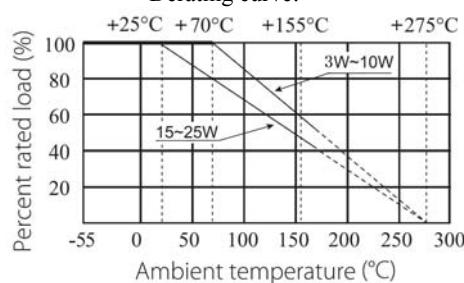
1. Wattage Rating
2. Nominal Resistance Value
3. Resistance Tolerance. J: $\pm 5\%$; K: $\pm 10\%$
4. Pattern:


M: Power film

W: Wire wound

Color of marking: Black Ink

Note: The marking code shall be prevailed in kind!


5. Dimension

Type	Dimension(mm)						Resistance Range	
	W±1	D±1	L±1	P±1	P1±0.2	H±1	Wire Wound	Power Film
PRVA 3W	10	9	22	9.5	1.3	25	0.1Ω-47Ω	48Ω-150KΩ
PRVA 5W	10	9	27/25	15/9.5	1.3	25	0.1Ω-120Ω	121Ω-200KΩ
PRVA 7W	10	9	35	22	1.3	25	0.1Ω-560Ω	561Ω-200KΩ
PRVA 10W	10	9	48	35/32	1.3	25	1Ω-820Ω	821Ω-200KΩ
PRVA 15W	12.5	11.5	48	32	1.5	24	1Ω-1KΩ	1.1KΩ-200KΩ
PRVA 20W	12.5	13.5	63	42	1.5	26	1Ω-1.2KΩ	1.3KΩ-200KΩ

6. Derating Curve

Derating curve:

Heat rise chart:

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R= nominal resistance (OHM)

7. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	$\geq 20\Omega: \pm 350\text{PPM}/^\circ\text{C}$ $< 20\Omega: \pm 400\text{PPM}/^\circ\text{C}$	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (PPM}/^\circ\text{C})$ <p>R₁: Resistance Value at room temperature (t₁) ; R₂: Resistance at test temperature (t₂) t₁: +25°C or specified room temperature t₂: Test temperature (-55°C or 125°C)</p>
Short-time overload	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90°metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.
Resistance to soldering heat	Resistance change rate must be in $\pm(1\%+0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^\circ\text{C} \pm 5^\circ\text{C}$ solder for 10 ± 1 seconds.
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: $245^\circ\text{C} \pm 3^\circ\text{C}$ Dwell time in solder: 2~3seconds.
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Humidity (Steady state)	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40 \pm 2^\circ\text{C}$ and 90~95%RH relative humidity
Load life in humidity	For Wire-wound: $\Delta R/R: \pm 5\%$ For Power film range: $< 100\text{K}\Omega \Delta R/R: \pm 5\%$ $\geq 100\text{K}\Omega \Delta R/R: \pm 10\%$	7.9 Resistance change after 1000 hours (1.5 hours “ON”, 0.5 hours “OFF”) at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at $40 \pm 2^\circ\text{C}$ and 93% $\pm 3\%$ RH.
Load life	For Wire-wound: $\Delta R/R: \pm 5\%$ For Power film range: $< 100\text{K}\Omega \Delta R/R: \pm 5\%$ $\geq 100\text{K}\Omega \Delta R/R: \pm 10\%$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours “ON”, 0.5 hour “OFF” at $25 \pm 2^\circ\text{C}$ or $70 \pm 2^\circ\text{C}$ ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R: \pm 5\%$ For Power film range: $< 100\text{K}\Omega \Delta R/R: \pm 5\%$ $\geq 100\text{K}\Omega \Delta R/R: \pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R: \pm 5\%$ For Power film range: $< 100\text{K}\Omega \Delta R/R: \pm 5\%$ $\geq 100\text{K}\Omega \Delta R/R: \pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.

8. Note

8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH.
Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

8.3. Storage conditions as below are inappropriate:

- Stored in high electrostatic environment
- Stored in direct sunshine, rain, snow or condensation.
- Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

9. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	4	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	1.Modify derating curve 2.Modify the load life test conditions	3 5	Sep.27, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice