



# DATASHEET

**Product Name** Axial Leaded Type Cement Fixed Resistors

**Part Name** PRWC Series

**File No.** DIP-SP-026

## Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email [marketing@uni-royal.cn](mailto:marketing@uni-royal.cn)

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

## 1. Scope

- 1.1 This datasheet is the characteristics of Axial Leaded Type Cement Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Non-inductive type available
- 1.5 Excellent flame & moisture resistance
- 1.6 Too low or too high values on Wire-wound&Power –film type can be supplied on a case to case basis
- 1.7 Compliant with RoHS directive.
- 1.8 Halogen free requirement.

## 2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4<sup>th</sup> digit will be “0”

Example: PRWC = PRWC type

- 2.2 5<sup>th</sup>~6<sup>th</sup> digits:

- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

Example: 5W=5W

- 2.3 The 7<sup>th</sup> digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

J=±5% K=±10%

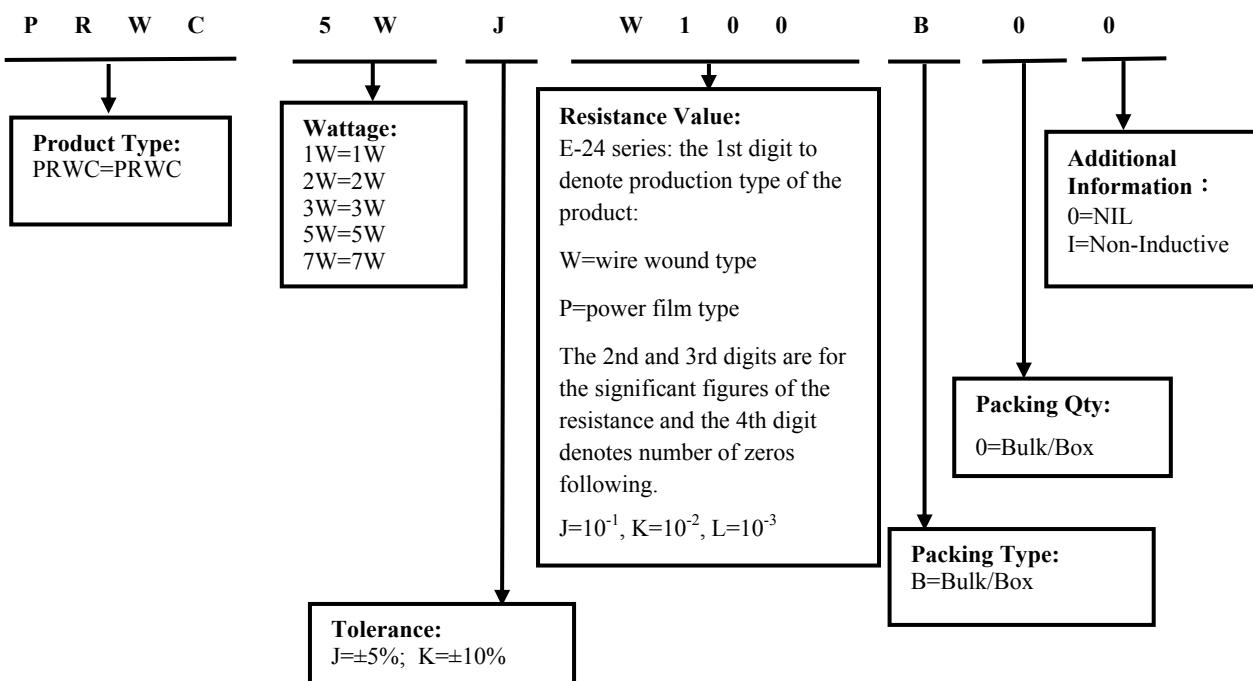
- 2.4 The 8<sup>th</sup> to 11<sup>th</sup> digits is to denote the Resistance Value.

- 2.4.1 For Cement Fixed Resistors the 8<sup>th</sup> digits will be coded with “W”or “P”to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9<sup>th</sup> & 10<sup>th</sup> digits are to denote the significant figures of the resistance and the 11<sup>th</sup> digit is the number of zeros following

Example: W12J=1.2Ω W120=12Ω P273=27KΩ

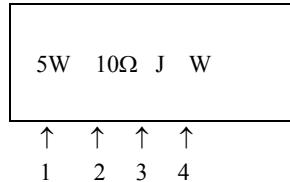
- 2.5 The 12<sup>th</sup>, 13<sup>th</sup> & 14<sup>th</sup> digits.

- 2.5.1 The 12<sup>th</sup> digit is to denote the Packaging Type with the following codes:


B=Bulk/Box

- 2.5.2 The 13<sup>th</sup> digit is normally to indicate the Packing Quantity, This digit should be filled with “0”for the Cement products with “Bulk/Box” packing requirements.

- 2.5.3 For some items, the 14<sup>th</sup> digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product; I=Non-Inductive


## 3. Ordering Procedure

(Example: PRWC 5W ±5% 10Ω B/B )



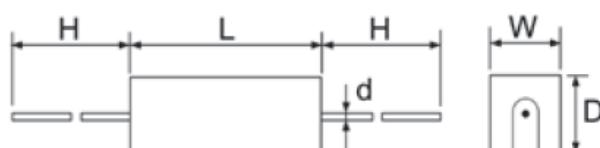
#### 4. Marking

Example:



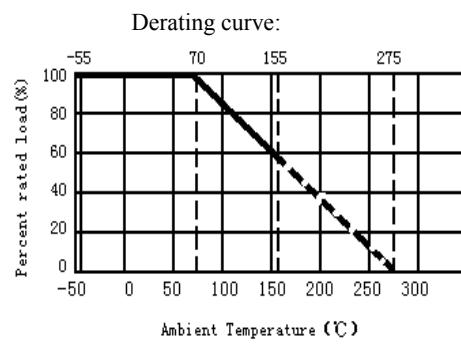
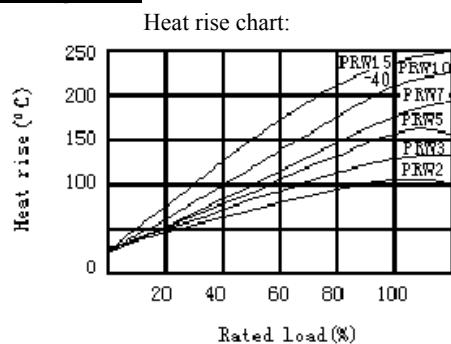
Code description and regulation:

1. Wattage Rating
2. Nominal Resistance Value
3. Resistance Tolerance. J:  $\pm 5\%$   
K:  $\pm 10\%$
4. Pattern:


M: Power film

W: Wire wound

Color of marking: Black Ink



Note: The marking code shall be prevailed in kind!

#### 5. Ratings & Dimension



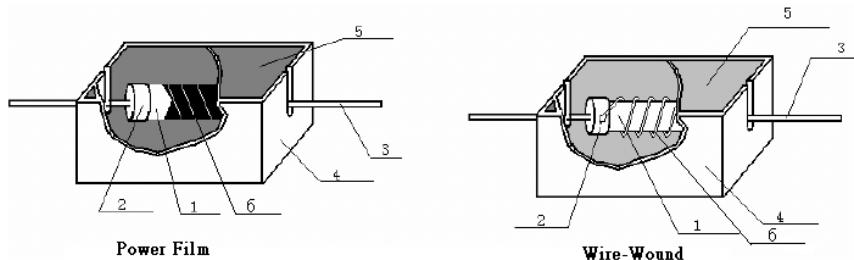
| Type    | Dimension(mm) |           |           |            |              | Resistance Range |            |
|---------|---------------|-----------|-----------|------------|--------------|------------------|------------|
|         | W $\pm 1$     | D $\pm 1$ | L $\pm 1$ | H          | d $\pm 0.05$ | Wire Wound       | Power Film |
| PRWC 1W | 6             | 6         | 12        | 25 $\pm 3$ | 0.70         | 1Ω~27Ω           | 28Ω~33KΩ   |
| PRWC 2W | 6             | 6         | 18        | 28 $\pm 5$ | 0.70         | 1Ω~27Ω           | 28Ω~33KΩ   |
| PRWC 3W | 6             | 6         | 20        | 28 $\pm 5$ | 0.70         | 1Ω~27Ω           | 28Ω~120KΩ  |
| PRWC 5W | 6             | 6         | 25        | 35 $\pm 5$ | 0.75         | 1Ω~200Ω          | 201Ω~150KΩ |
| PRWC 7W | 9             | 9         | 25        | 35 $\pm 5$ | 0.75         | 1Ω~200Ω          | 201Ω~150KΩ |

#### 6. Derating Curve



##### 6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:


$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R = nominal resistance (OHM)

## 7. Structure



| No. | Name               | Material Generic Name        |
|-----|--------------------|------------------------------|
| 1   | Body               | $\text{Al}_2\text{O}_3$      |
| 2   | Cap                | Tin plated iron              |
| 3   | Lead               | Copper Wire                  |
| 4   | Ceramic Case       | $\text{Al}_2\text{O}_3$ CaO  |
| 5   | Filling Materials  | $\text{SiO}_2$               |
| 6   | Resistance element | Power Film: Metal Mixed film |
|     |                    | Wire-Wound: Alloy Wire       |

## 8. Performance Specification

| Characteristic                  | Limits                                                                                              | Test Methods<br>(GB/T5729&JIS-C-5201&IEC60115-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature Coefficient         | $\geq 20\Omega: \pm 350\text{PPM}/^\circ\text{C}$<br>$< 20\Omega: \pm 400\text{PPM}/^\circ\text{C}$ | 4.8 Natural resistance changes per temp. Degree centigrade<br>$\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (PPM}/^\circ\text{C})$ <p><math>R_1</math>: Resistance Value at room temperature (<math>t_1</math>) ;<br/> <math>R_2</math>: Resistance at test temperature (<math>t_2</math>)<br/> <math>t_1</math>: <math>+25^\circ\text{C}</math> or specified room temperature<br/> <math>t_2</math>: Test temperature (<math>-55^\circ\text{C}</math> or <math>125^\circ\text{C}</math>)</p> |
| Short-time overload             | Resistance change rate must be in $\pm(5\% + 0.05\Omega)$ , and no mechanical damage.               | 4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.                                                                                                                                                                                                                                                                                                                                                         |
| Dielectric withstanding voltage | No evidence of flashover mechanical damage, arcing or insulation break down.                        | 4.7 Resistors shall be clamped in the trough of a $90^\circ$ metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.                                                                                                                                                                                                                                                                |
| Terminal strength               | No evidence of mechanical damage                                                                    | 4.16 Direct load:<br>Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads.<br>Twist test:<br>Terminal leads shall be bent through $90^\circ$ at a point of about 6mm from the body of the resistor and shall be rotated through $360^\circ$ about the original axis of the bent terminal in alternating direction for a total of 3 rotations.                                                                                           |

|                              |                                                                                                                                                              |                                                                                                                                                                                                                         |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resistance to soldering heat | Resistance change rate must be in $\pm(1\%+0.05\Omega)$ , and no mechanical damage.                                                                          | 4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}\text{C}\pm5^{\circ}\text{C}$ solder for 10±1 seconds.                                                           |
| Solderability                | 95% coverage Min.                                                                                                                                            | 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes.<br>Test temp. Of solder: $245^{\circ}\text{C}\pm3^{\circ}\text{C}$<br>Dwell time in solder: 2~3seconds.  |
| Humidity (Steady state)      | Resistance change rate must be in $\pm(5\%+0.05\Omega)$ , and no mechanical damage.                                                                          | 4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40\pm2^{\circ}\text{C}$ and 90~95%RH relative humidity                                                              |
| Load life in humidity        | For Wire-wound: $\Delta R/R: \pm 5\%$<br>For Power film range:<br>$< 100\text{K}\Omega \Delta R/R: \pm 5\%$<br>$\geq 100\text{K}\Omega \Delta R/R: \pm 10\%$ | 7.9 Resistance change after 1000 hours (1.5hours “ON”, 0.5hours “OFF”) at RCWV or Max. Working Voltage whichever less in a humidity test chamber controlled at $40\pm2^{\circ}\text{C}$ and $93\% \pm 3\% \text{ RH}$ . |
| Load life                    | For Wire-wound: $\Delta R/R: \pm 5\%$<br>For Power film range:<br>$< 100\text{K}\Omega \Delta R/R: \pm 5\%$<br>$\geq 100\text{K}\Omega \Delta R/R: \pm 10\%$ | 4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours “ON”, 0.5 hour “OFF” at $70\pm 2^{\circ}\text{C}$ ambient.                    |
| Low Temperature Storage      | For Wire-wound: $\Delta R/R: \pm 5\%$<br>For Power film range:<br>$< 100\text{K}\Omega \Delta R/R: \pm 5\%$<br>$\geq 100\text{K}\Omega \Delta R/R: \pm 10\%$ | IEC 60068-2-1 (Aa)<br>Lower limit temperature, for 2H.                                                                                                                                                                  |
| High Temperature Exposure    | For Wire-wound: $\Delta R/R: \pm 5\%$<br>For Power film range:<br>$< 100\text{K}\Omega \Delta R/R: \pm 5\%$<br>$\geq 100\text{K}\Omega \Delta R/R: \pm 10\%$ | MIL-STD-202 108A<br>Upper limit temperature, for 16H.                                                                                                                                                                   |

## 9. Note

9.1 UNI-ROYAL recommend the storage condition temperature:  $15^{\circ}\text{C}\sim35^{\circ}\text{C}$ , humidity: 25%~75%.

(Put condition for individual product)

Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) maybe degraded.

9.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

9.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:

a. Storage in high Electrostatic

b. Storage in direct sunshine、rain and snow or condensation

c. Where the products are exposed to sea winds or corrosive gases, including  $\text{Cl}_2$ ,  $\text{H}_2\text{S}_3$ ,  $\text{NH}_3$ ,  $\text{SO}_2$ ,  $\text{NO}_2$ , Br etc.

## 10. Record

| Version | Description                                        | Page | Date         | Amended by  | Checked by  |
|---------|----------------------------------------------------|------|--------------|-------------|-------------|
| 1       | First version                                      | 1~5  | Mar.20, 2018 | Haiyan Chen | Nana Chen   |
| 2       | Modify characteristic                              | 4~5  | Feb.26, 2019 | Haiyan Chen | Yuhua Xu    |
| 3       | Modify characteristic                              | 5    | Nov.20, 2020 | Song Nie    | Yuhua Xu    |
| 4       | Modify the temperature coefficient test conditions | 4    | Nov.07, 2022 | Haiyan Chen | Yuhua Xu    |
| 5       | Modify Ordering Procedure                          | 2    | Nov.13, 2024 | Junying Ye  | Haiyan Chen |

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice